218 research outputs found

    Molecular etiopathogenesis of limb girdle muscular and congenital muscular dystrophies: boundaries and contiguities

    Get PDF
    Abstract The muscular dystrophies are a heterogeneous group of inherited disorders characterized by progressive muscle wasting and weakness. These disorders present a large clinical variability regarding age of onset, patterns of skeletal muscle involvement, heart damage, rate of progression and mode of inheritance. Difficulties in classification are often caused by the relatively common sporadic occurrence of autosomal recessive forms as well as by intrafamilial clinical variability. Furthermore recent discoveries, particularly regarding the proteins linking the sarcolemma to components of the extracellular matrix, have restricted the gap existing between limb girdle (LGMD) and congenital muscular dystrophies (CMD). Therefore a renewed definition of boundaries between these two groups is required. Molecular genetic studies have demonstrated different causative mutations in the genes encoding a disparate collection of proteins involved in all aspects of muscle cell biology. These novel skeletal muscle genes encode highly diverse proteins with different localization within or at the surface of the skeletal muscle fibre, such as the sarcolemmal muscle membrane (dystrophin, sarcoglycans, dysferlin, caveolin-3), the extracellular matrix (a2 laminin, collagen VI), the sarcomere (telethonin, myotilin, titin, nebulin and ZASP), the muscle cytosol (calpain-3, TRIM32), the nucleus (emerin, lamin A/C) and the glycosilation pathway enzymes (fukutin and fukutin related proteins). The accumulating knowledge about the role of these different proteins in muscle pathology has led to a profound change in the original phenotype-based classification and shed new light on the molecular pathogenesis of these disorders.

    Both selective and neutral processes drive GC content evolution in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mammalian genomes consist of regions differing in GC content, referred to as isochores or GC-content domains. The scientific debate is still open as to whether such compositional heterogeneity is a selected or neutral trait.</p> <p>Results</p> <p>Here we analyze SNP allele frequencies, retrotransposon insertion polymorphisms (RIPs), as well as fixed substitutions accumulated in the human lineage since its divergence from chimpanzee to indicate that biased gene conversion (BGC) has been playing a role in within-genome GC content variation. Yet, a distinct contribution to GC content evolution is accounted for by a selective process. Accordingly, we searched for independent evidences that GC content distribution does not conform to neutral expectations. Indeed, after correcting for possible biases, we show that intron GC content and size display isochore-specific correlations.</p> <p>Conclusion</p> <p>We consider that the more parsimonious explanation for our results is that GC content is subjected to the action of both weak selection and BGC in the human genome with features such as nucleosome positioning or chromatin conformation possibly representing the final target of selective processes. This view might reconcile previous contrasting findings and add some theoretical background to recent evidences suggesting that GC content domains display different behaviors with respect to highly regulated biological processes such as developmentally-stage related gene expression and programmed replication timing during neural stem cell differentiation.</p

    Ataluren treatment of patients with nonsense mutation dystrophinopathy

    Get PDF
    Introduction: Dystrophinopathy is a rare, severe muscle disorder, and nonsense mutations are found in 13% of cases. Ataluren was developed to enable ribosomal readthrough of premature stop codons in nonsense mutation (nm) genetic disorders. Methods: Randomized, double-blind, placebo-controlled study; males ≥5 years with nm-dystrophinopathy received study drug orally 3 times daily, ataluren 10, 10, 20 mg/kg (N=57); ataluren 20, 20, 40 mg/kg (N=60); or placebo (N=57) for 48 weeks. The primary endpoint was change in 6-Minute Walk Distance (6MWD) at Week 48. Results: Ataluren was generally well tolerated. The primary endpoint favored ataluren 10, 10, 20 mg/kg versus placebo; the week 48 6MWD Δ=31.3 meters, post hoc P=0.056. Secondary endpoints (timed function tests) showed meaningful differences between ataluren 10, 10, 20 mg/kg, and placebo. Conclusions: As the first investigational new drug targeting the underlying cause of nm-dystrophinopathy, ataluren offers promise as a treatment for this orphan genetic disorder with high unmet medical need

    A complex selection signature at the human AVPR1B gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The vasopressin receptor type 1b (<it>AVPR1B</it>) is mainly expressed by pituitary corticotropes and it mediates the stimulatory effects of AVP on ACTH release; common <it>AVPR1B </it>haplotypes have been involved in mood and anxiety disorders in humans, while rodents lacking a functional receptor gene display behavioral defects and altered stress responses.</p> <p>Results</p> <p>Here we have analyzed the two exons of the gene and the data we present suggest that <it>AVPR1B </it>has been subjected to natural selection in humans. In particular, analysis of exon 2 strongly suggests the action of balancing selection in African populations and Europeans: the region displays high nucleotide diversity, an excess of intermediate-frequency alleles, a higher level of within-species diversity compared to interspecific divergence and a genealogy with common haplotypes separated by deep branches. This relatively unambiguous situation coexists with unusual features across exon 1, raising the possibility that a nonsynonymous variant (Gly191Arg) in this region has been subjected to directional selection.</p> <p>Conclusion</p> <p>Although the underlying selective pressure(s) remains to be identified, we consider this to be among the first documented examples of a gene involved in mood disorders and subjected to natural selection in humans; this observation might add support to the long-debated idea that depression/low mood might have played an adaptive role during human evolution.</p

    Tyr78Phe Transthyretin Mutation with Predominant Motor Neuropathy as the Initial Presentation

    Get PDF
    Transthyretin (TTR) amyloidosis, the most frequent form of hereditary amyloidosis, is caused by dominant mutations in the TTR gene. More than 100 mutations have been identified. Clinical manifestations of TTR amyloidosis are usually induced by extracellular amyloid deposition in several organs. The major neurological manifestation is motor-sensory neuropathy associated with dysautonomic impairment. Here, we describe a 63-year-old man who came to our institution due to a suspected motor neuron disease. During a 4-year follow-up period, he underwent extensive clinical examination, electromyographic studies, sural nerve biopsy and TTR gene analysis by direct sequencing. Despite the predominant motor involvement, the detailed clinical examination also showed some mild sensory and dysautonomic signs. In addition, his clinical and family history included multiorgan disorders, such as carpal tunnel syndrome, as well as conditions with cardiac, renal, eye, and hepatic involvement. The sural nerve biopsy disclosed amyloid deposition, and the sequence analysis of the TTR gene detected a heterozygous Tyr78Phe substitution. The TTR gene variant found in our patient had only been described once so far, in a French man of Italian origin presenting with late-onset peripheral neuropathy and bilateral carpal tunnel syndrome. The predominant motor involvement presented by our patient is an uncommon occurrence and demonstrates the clinical heterogeneity of TTR amyloidosis

    Stormorken syndrome caused by a p.R304W STIM1 mutation: The first Italian patient and a review of the literature

    Get PDF
    Stormorken syndrome is a rare autosomal dominant disease that is characterized by a complex phenotype that includes tubular aggregate myopathy (TAM), bleeding diathesis, hyposplenism, mild hypocalcemia and additional features, such as miosis and a mild intellectual disability (dyslexia). Stormorken syndrome is caused by autosomal dominant mutations in the STIM1 gene, which encodes an endoplasmic reticulum Ca2+ sensor. Here, we describe the clinical and molecular aspects of a 21-year-old Italian female with Stormorken syndrome. The STIM1 gene sequence identified a c.910C T transition in a STIM1 allele (p.R304W). The p.R304W mutation is a common mutation that is responsible for Stormorken syndrome and is hypothesized to cause a gain of function action associated with a rise in Ca2+ levels. A review of published STIM1 mutations (n = 50) and reported Stormorken patients (n = 11) indicated a genotype-phenotype correlation with mutations in a coiled coil cytoplasmic domain associated with complete Stormorken syndrome, and other pathological variants outside this region were more often linked to an incomplete phenotype. Our study describes the first Italian patient with Stormorken syndrome, contributes to the genotype/phenotype correlation and highlights the possibility of directly investigating the p.R304W mutation in the presence of a typical phenotype

    Glycogen storage disease type III: A novel Agl knockout mouse model

    Get PDF
    AbstractGlycogen storage disease type III is an autosomal recessive disease characterized by a deficiency in the glycogen debranching enzyme, encoded by AGL. Essential features of this disease are hepatomegaly, hypoglycemia, hyperlipidemia, and growth retardation. Progressive skeletal myopathy, neuropathy, and/or cardiomyopathy become prominent in adults. Currently, there is no available cure. We generated an Agl knockout mouse model by deletion of the carboxy terminus of the protein, including the carboxy end of the glucosidase domain and the glycogen-binding domain. Agl knockout mice presented serious hepatomegaly, but we did not observe signs of cirrhosis or adenomas. In affected tissues, glycogen storage was higher than in wild-type mice, even in the central nervous system which has never been tested in GSDIII patients. The biochemical findings were in accordance with histological data, which clearly documented tissue impairment due to glycogen accumulation. Indeed, electron microscopy revealed the disruption of contractile units due to glycogen infiltrations. Furthermore, adult Agl knockout animals appeared less prompt to move, and they exhibited kyphosis. Three-mo-old Agl knockout mice could not run, and adult mice showed exercise intolerance. In addition, older affected animals exhibited an accelerated respiratory rate even at basal conditions. This observation was correlated with severe glycogen accumulation in the diaphragm. Diffuse glycogen deposition was observed in the tongues of affected mice. Our results demonstrate that this Agl knockout mouse is a reliable model for human glycogenosis type III, as it recapitulates the essential phenotypic features of the disease

    Cosegregation of novel mitochondrial 16S rRNA gene mutations with the age-associated T414G variant in human cybrids

    Get PDF
    Ever increasing evidence has been provided on the accumulation of mutations in the mitochondrial DNA (mtDNA) during the aging process. However, the lack of direct functional consequences of the mutant mtDNA load on the mitochondria-dependent cell metabolism has raised many questions on the physiological importance of the age-related mtDNA variations. In the present work, we have analyzed the bioenergetic properties associated with the age-related T414G mutation of the mtDNA control region in transmitochondrial cybrids. The results show that the T414G mutation does not cause per se any detectable bioenergetic change. Moreover, three mtDNA mutations clustered in the 16S ribosomal RNA gene cosegregated together with the T414G in the same cybrid cell line. Two of them, namely T1843C and A1940G, are novel and associate with a negative bioenergetic phenotype. The results are discussed in the more general context of the complex heterogeneity and the dramatic instability of the mitochondrial genome during cell culture of transmitochondrial cybrids
    corecore